

VFC Sync 2MHz 20-Pin PLCC Tube

Manufacturer: Analog Devices, Inc

Package/Case: PLCC20

Product Type: Data Conversion ICs

Lifecycle: Obsolete

Images are for reference only

Inquiry

General Description

The AD652 uses a variation of the popular charge-balancing technique to perform the conversion function. The AD652 uses an external clock to define the full-scale output frequency, rather than relying on the stability of an external capacitor. The result is a more stable, more linear transfer function, with significant application benefits in both single and multichannel systems.

Gain drift is minimized using a precision low drift reference and low TC on-chip thin-film scaling resistors. Furthermore, the initial gain error is reduced to less than 0.5% by the use of laser-wafer-trimming.

The analog and digital sections of the AD652 have been designed to allow operation from a single-ended power source, simplifying its use with isolated power supplies.

The AD652 is available in five performance grades. The 20-pin PLCC packaged JP and KP grades are specified for operation over the 0° C to $+70^{\circ}$ C commercial temperature range. The 16- pin cerdip-packaged AQ and BQ grades are specified for operation over the -40° C to $+85^{\circ}$ C industrial temperature range, and the AD652SQ is available for operation over the full -55° C to $+125^{\circ}$ C extended temperature range.

Key Features

Full-Scale Frequency (up to 2 MHz) set by external system clock

Extremely low linearity error (0.005% max at 1 MHz FS, 0.02% max at 2 MHz FS)

No critical external components required

Accurate 5V reference voltage

Low drift (25 ppm/°C max)

Dual- or single-supply operation

Voltage or current input

MIL-STD-883 compliant versions available

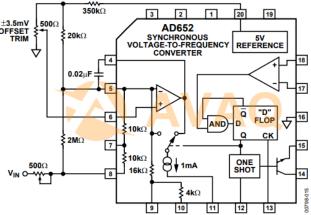


Figure 15. PLCC Gain and Offset Trim

Recommended For You

AD/305BRZ	AD9910BSVZ	AD9831AS1Z
Analog Devices, Inc	Analog Devices, Inc	Analog Devices, Inc
SOP20	TQFP100	QFP

		`
AD5447YRUZ	AD5302BRMZ	AD5531BRUZ
Analog Devices, Inc	Analog Devices, Inc	Analog Devices, Inc
TSSOP	MSOP10	TSSOP16
AD537JH	AD652AQ	AD654JN

Analog Devices, Inc	Analog Devices, Inc	Analog Devices, Inc
CAN10	DIP	DIP8

CAN10	DIP	DIP8
AD7740YRMZ	AD9914BCPZ	AD73311ARSZ
Analog Devices, Inc	Analog Devices, Inc	Analog Devices, Inc
MSOP8	LFCSP	SSOP20
AD7291BCPZ	AD9954YSVZ	AD2S1205YSTZ
Analog Devices, Inc	Analog Devices, Inc	Analog Devices, Inc
LFCSP20	QFP	LQFP44