

Bus Switch 2-Element CMOS 2-IN 8-Pin TSSOP T/R

Manufacturer:	Texas Instruments, Inc	
Package/Case:	TSSOP8	SN74CBT3306CPWR Image
Product Type:	Switches	Inquiry
RoHS:	RoHS Compliant/Lead free RoHS	
Lifecycle:	Active	

General Description

The SN74CBT3306C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT3306C provides protection for undershoot up to -2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state.

The SN74CBT3306C is organized as two 1-bit bus switches with separate output-enable (10E\, 20E\) inputs. It can be used as two 1-bit bus switches or as one 2-bit bus switch. When OE\ is low, the associated 1-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the associated 1-bit bus switch is OFF, and the high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Key Features

Undershoot Protection for Off-Isolation on A and B Ports Up to -2 V Bidirectional Data Flow, With Near-Zero Propagation Delay Low ON-State Resistance (ron) Characteristics (ron = 3Typical) Low Input/Output Capacitance Minimizes Loading and Signal Distortion (Cio(OFF) = 5 pF Typical) Data and Control Inputs Provide Undershoot Clamps Diodes Low Power Consumption (ICC = 3 μA Max) VCC Operating Range From 4 V to 5.5 V Data I/Os Support 0 to 5-V Signaling Levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V) Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs Ioff Supports Partial-Power-Down Mode Operation Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

ESD Performance Tested Per JESD 22 2000-V Human-Body Model (A114-B, Class II)

1000-V Charged-Device Model (C101)

Supports Both Digital and Analog Applications: USB Interface, Bus Isolation, Low-Distortion Signal Gating

Description

The SN74CBT3306C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT3306C provides protection for undershoot up to -2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state.

The SN74CBT3306C is organized as two 1-bit bus switches with separate output-enable (10E\, 20E\) inputs. It can be used as two 1-bit bus switches or as one 2-bit bus switch. When OE\ is low, the associated 1-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the associated 1-bit bus switch is OFF, and the high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Recommended For You

SN74HC4066N

Texas Instruments, Inc DIP14

SN74CBT3244PWR Texas Instruments, Inc TSSOP20

SN74LVC2G53DCUR

Texas Instruments, Inc VSSOP8

SN74CB3Q16211DGVR

Texas Instruments, Inc TSSOP

SN3257QPWRQ1 Texas Instruments, Inc

TSSOP16

SN74CBTD3384DW Texas Instruments, Inc

SOIC

SN74CBT3253CD

Texas Instruments, Inc SOIC-16

SN74LVC2G53DCTR

Texas Instruments, Inc TSSOP8

SN74CBTLV3251PWR Texas Instruments, Inc TSSOP-16

SN74LVC2G66QDCURQ1

Texas Instruments, Inc VSSOP8 SN74CBT3306PWR

Texas Instruments, Inc TSSOP8

SN74CB3T3306DCUR

Texas Instruments, Inc

SN74CB3T3245PW

VSSOP-8

Texas Instruments, Inc TSSOP20

SN74HC4851QPWRQ1

Texas Instruments, Inc TSSOP16

SN74CB3T16212DGGR

Texas Instruments, Inc TSSOP-56